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It is shown that the trivariate stochastic processes {(Mt -W t, Mt ,

et), t > 0) and (1Wt1 , Lt, Tt), t > 01 have the same distributions when:

W = {Wt, t > 0) is a Wiener process, Mt is the maximum value attained by W

over the time interval [D,t], G t is the time the maximum value is attained,

Lt is the local time of W at level zero and time t, and Tt is the last time

W is zero in the time interval [0,t]. A straightforward proof, based on

"Tanaka's formula", establishes this result by deriving an almost sure

version of the equivalence.
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As described by Knight (1981), "iLvy's equivalence" refers to the

equality in distribution of the bivariate stochastic processes {(Mt -Wt,

Mt), t > 0) and (IWt1, L t) t > 0). Here, W = {Wt, t > 0} is a (standard)

Wiener process, Mt = ReX 0<s< t Ws, and 1,t is the local time of W at level

- zero and time t. ')ln a recent paper [3], the author presents an elementary

-::: derivation of a discrete analogue of this result, for a symmetric simple

random walk, which he then uses to derive Ldvy's equivalence. The

objective here is to point out that there is a trivariate version of ldvy's

equivalenee.which states that the processes {(Mt --wt.-Mt, eo), t > 0) and

{(IWtI, Lt, Tt), t > 01 have the same distributions, where e t G [0,t] is

the time at which the maximum Mt ii attained, and Tt is the last zero of W

in the time interval [O,t]. _ '-.. ?t-: )

The proof depends on Tanaka's formula (cf. -an (1969), page 68),V

which says

Lt = IWtI + W , t > 0,

where W = (Wt, t > 0 is a new Wiener process defined by
t t

W= h(Ws)dW , t > 0,

with h() = -sign(-) (ct. MdKean (1969), page 29). Observe that

W-Wt = IWtl- 1Ws - (Lt- Ls) < IWtl, s G [O,t].

The inequality is an equality if and only if s = Tt.. Thus

..,,............ ............. ...,........... ...... ;... ... ............. ,..... -. ..
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The inequality is an equality if and only if' s = Tt. Thus

(1) (M t -w , Mt, et) = OwtI, Lt, Tt)d t > 0.

where Mt = Max 5 t, an P,~ [0, t] is the time of the maimum. It

should be emphasized that (1) is an almost sure identity in t for two

*trivariate stochastic processes. Consequently, [(M, - Wt, Mt, O0 , t > 0)

* and UIlWtl, Lt, Tt), t > 0) have the same distributions as asserted.
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